All the parts
Abstract
Loading and processing data, putting it all together.
Pyodide yaml
pyodide:
packages:
- matplotlib
- numpy
- pandas
- r3f
- seaborn
- https://whitenoisetech.codeberg.page/2025-03-12-ddl-pyodide/_external/sgl/dist/sgl-2.1.5-py3-none-any.whl
resources:
- https://raw.githubusercontent.com/AFIT-EENG-MagNav/example-data/refs/heads/main/mit-aia/flight1002/10Hz_Mag_INS_Aux_Flt1002.xyz.zip
- "_external/inu/inu.py" # path must be relative to this file
Python imports
Load the data
Loading a data example from MIT-AF AI Accelerator (Gnadt et al. 2023).
Parse out needed variables
Compute velocity from position
Plot the flight path
Somewhere near Ottawa, ON.
Define simulation
Inverse mechanize to get simulated IMU
Computes accelerometer and gyro measurements from the trajectory.
Forward mechanize no altitude aiding
Compare forward mechanize and original
Forward mechanize and fix altitude
Compare with and without altitude aiding
Add noise to IMU data
Extended Kalman fitler
Run the extended Kalman filter
Compare truth and filter
Somewhere near Ottawa, ON.
References
Gnadt, Albert R., Joseph Belarge, Aaron Canciani, Lauren Conger, Joseph Curro, Alan Edelman, Peter Morales, et al. 2023. “DAF-MIT AIA Open Flight Data for Magnetic Navigation Research.” Zenodo. https://doi.org/10.5281/zenodo.4271803.